This is an old revision of the document!
Table of Contents
-
- The Impact of Deep Learning
- A Tutorial Example
- A Brief History of Machine Learning
-
- The Rules of Probability
- Probability Densities
- The Gaussian Distribution
- Transformation Of Densities
- Information Theory
- Bayesian Probabilities
-
- Discrete Variables
- The Multivariate Gaussian
- Periodic Variables
- The Exponential Family
- Nonparametric Methods
- Histograms
- Kernel densities
- Nearest-neighbours
-
- Linear Regression
- Decision Theory
- The Bias-Variance Trade-off
-
- Discrimination Functions
- Decision Theory
- Generative Classifiers
- Discriminative Classifiers
-
- Limitations of Fixed Basis Functions
- Mulilayer Networks
- Deep Networks
- Error Functions
- Mixture Density Networks
-
- Error Surfaces
- Gradient Descent Optimization
- Convergence
- Normalization
- Batch Normalization
- Layer Normalization
-
- Evaluation of Gradients
- Automatic Differntiation
-
- Induction Bias
- Weight Decay
- Learning Curves
- Parameter Sharing
- Residual Connections
- Model Averaging
-
- Computer Vision
- Convulutional Filters
- General Graph Networks
-
- Graphical Models
- Conditional Independence
- Sequence Models
-
- Attention
- Natural Language
- Transformer Language Models
- Multimodal Transformers]]
-
- Machine Learning on Graphs
- Neural Message-Passing
- General Graph Networks
-
- Basic Sampling Algorithms
- Markov Chgain Monte Carlo
- Langevin Sampling
-
- k-means Clustering
- Mixture of Gaussians
- Expectation-Maximizastion Algorithm
- Evidence Lower Bound
-
- Principal Component Analysis
- Probabilistic Latent Variables
- Evidence Lower Bound
- Nonlinear Latent Variable Models
-
- Adversarial Training
- Image GANs
-
- Coupling Flows
- Autoregressive Flows
- Continuous Flows
-
- Deterministic Autoencoders
- Variational Autoencoders
-
- Forward Encoder
- Reverse Encoder
- Score Matching
- Guided Diffusion
- Appendices