deeplearningfoundationsandconcepts

This is an old revision of the document!


Table of Contents

    1. The Impact of Deep Learning
    2. A Tutorial Example
    3. A Brief History of Machine Learning
    1. The Rules of Probability
    2. Probability Densities
    3. The Gaussian Distribution
    4. Transformation Of Densities
    5. Information Theory
    6. Bayesian Probabilities
    1. Discrete Variables
    2. The Multivariate Gaussian
    3. Periodic Variables
    4. The Exponential Family
    5. Nonparametric Methods
    6. Histograms
    7. Kernel densities
    8. Nearest-neighbours
    1. Linear Regression
    2. Decision Theory
    3. The Bias-Variance Trade-off
    1. Discrimination Functions
    2. Decision Theory
    3. Generative Classifiers
    4. Discriminative Classifiers
    1. Limitations of Fixed Basis Functions
    2. Mulilayer Networks
    3. Deep Networks
    4. Error Functions
    5. Mixture Density Networks
    1. Error Surfaces
    2. Gradient Descent Optimization
    3. Convergence
    4. Normalization
    5. Batch Normalization
    6. Layer Normalization
    1. Evaluation of Gradients
    2. Automatic Differntiation
    1. Induction Bias
    2. Weight Decay
    3. Learning Curves
    4. Parameter Sharing
    5. Residual Connections
    6. Model Averaging
    1. Computer Vision
    2. Convulutional Filters
    3. General Graph Networks
    1. Graphical Models
    2. Conditional Independence
    3. Sequence Models
    1. Attention
    2. Natural Language
    3. Transformer Language Models
    4. Multimodal Transformers]]
    1. Machine Learning on Graphs
    2. Neural Message-Passing
    3. General Graph Networks
    1. Basic Sampling Algorithms
    2. Markov Chgain Monte Carlo
    3. Langevin Sampling
    1. k-means Clustering
    2. Mixture of Gaussians
    3. Expectation-Maximizastion Algorithm
    4. Evidence Lower Bound
    1. Principal Component Analysis
    2. Probabilistic Latent Variables
    3. Evidence Lower Bound
    4. Nonlinear Latent Variable Models
    1. Adversarial Training
    2. Image GANs
    1. Coupling Flows
    2. Autoregressive Flows
    3. Continuous Flows
    1. Deterministic Autoencoders
    2. Variational Autoencoders
    1. Forward Encoder
    2. Reverse Encoder
    3. Score Matching
    4. Guided Diffusion
  • deeplearningfoundationsandconcepts.1746458760.txt.gz
  • Last modified: 2025/05/05 11:26
  • by gedbadmin